Introduction to Mechanical Behaviour of Ceramics

di De Portu G.

invia la pagina per emailcondividi su Facebookcondividi su Twitter
  • Prezzo: € 50.00
    Aggiungi Carrello

    Descrizione:

    286 pp., tavv., ill.



    Indice


    PAG.
    IX -
    PREFACE
    1 - INTRODUCTION TO MECHANICAL BEHAVIOUR OF CERAMICS - Goffredo de Porto
    1 - Introduction
    2 - Statistical Analysis of Literature
    4 - Failure Behaviour
    8 - Origin of Flaws
    8 - Surface Cracks
    12 - Fabrication Defects
    13 - Statistical Analysis
    14 - Environmental and Time Effect
    17 - Strength Probability Time (SPT) Diagrams
    18 - Process Improvement
    19 - Toughening of Monolithic Ceramics
    19 - Stress Induced Trasformation
    21 - Microcracking
    23 - Crack Deflection
    24 - Crack Bridging
    25 - Crack Growth Resistance (R-curve)
    26 - Concluding Remarks
    26 - References
    31 - ELASTIC BEHAVIOUR OF CERAMICS - David J. Green
    31 - Linear Elasticity
    36 - Influence of Atomic Structure
    39 - Influence of Microstructure on Elastic Costants
    44 - Measurement of Elastic Costants for Isotropic Materials
    49 - Summary
    50 - References
    53 - FRACTURE MECHANICS - David J. Green
    53 - Griffith Approach
    59 - Linear Elastic Fracture Mechanics
    60 - Crack StabiIity
    62 - Identation Fracture Mechanics
    63 - R-Curve Behaviour
    65 - Concluding Remarks
    67 - References
    69 - STRENGTH - CONTROLLING FLAWS IN CERAMICS - David J. Green
    70 - Sources of Crack Formation
    71 - Fractography
    72 - Examples of Flaw Origins
    77 - Strength Improvements and Processing
    79 - References
    81 - INDENTATION OF CERAMICS - David J. Rowcliffe
    81 - Introduction
    82 - Indenter Shapes, Cracks and Indentation Cycles
    88 - Stress Fields Under Indenters
    91 - Hardness and Hardness Anisotropy
    95 - Indentation Fracture Toughness
    97 - Measurement of Elastic Modulus
    98 - Low - Load Indentation
    101 - Conclusions
    102 - References
    105 - STRENGTH AND RELIABILITY OF CERAMICS - John E. Ritter
    105 - Introduction
    106 - Reliability Considerations
    106 - Statistics
    110 - Time Dependent Failure
    112 - Reliability Analysis
    112 - Proof Testing
    114 - Toughened Ceramics
    116 - Application
    119 - Summary
    120 -
    References
    123 - CREEP OF CERAMICS - Sheldon M. Wiederhorn
    123 - Introduction
    123 - Implications of Creep to Life time
    126 - The Importance of Microstructure to Creep
    126 - Single - Phase Ceramics
    129 - Multi - Phase Cerarnics
    132 - Fiber or Whisker Reinforcement
    134 - Summary
    134 - References
    137 - CREEP AND CREEP RUPTURE OF STRUCTURAL CERAMICS - Sheldon M. Wiederhorn
    137 - Introduction
    138 - Tensile Versus Compressive Creep
    143 - Creep Rupture of Structural Ceramics
    144 - Siliconized/Silicon Carbide
    147 - Whisker - Reinforced - Composites
    149 - Material Assessment
    151 - References
    155 - THERMAL - SHOCK PROPERTIES OF CERAMICS - Philippe Boch
    155 - Brittle Behaviour of Ceramics
    157 - Thermal Expansion of Solids
    158 - Thermal Expansion of Crystals
    158 - Single Crystals and Symmetry
    158 - Polycrystals
    159 - Multiphase Materials
    161 - Thermal Expansion of Glasses
    162 - Thermal - Shock Resistance of a Part
    163 - The Thermoelastic Theory of Thermal - Shock Resistance
    163- Thermal Stress and Thermal Strain
    166 - Thermal Stress Distribution
    167 - Strengthening of Glass by Thermal Quenching
    168- Thermal - Shock Severity
    168- Thermal - Shock Resistance Hierarchy
    169 - Various Geometries and Heat - Exchange Conditions
    170 - Applicability of the Thermoelastic Theory
    171 - The Energetic Theory of Thermal - Shock Resistance
    171 - The Energetic Theory
    174 - Thermal - Shock Resistance Parameters
    175 - Applicability of the Energetic Theory
    175 - Which Theory Should be Chosen?
    175 - Thermal Fatigue
    177 - Determination of dT and Standards
    178 - Conclusions
    179 - References
    181 - TOUGHENING MECHANISMS OF CERAMICS - Gunter Ziegler
    181 - Introduction
    182 - Toughening Mechanisms
    191 - State - of - the - Art of Ceramic - Matrix Composites
    191 - Composite Systems
    196 - Criticai Review
    201 - Examples far Problem Areas
    201 - Low - Temperature Processing
    208 - Importance of Interface
    214 - References
    217 - THE FRACTURE OF CERAMIC - MATRIX COMPOSITES - Orfeo Sbaizero
    217 - Introduction
    218 - Toughening Mechanisms
    222 - Stress - Strain Curve
    224 - Matrix Cracking
    225 - Ultimate Strength
    226 - Pull- Out
    226 - Conclusions
    227 - References
    229 - EROSION OF HIGH - TEC H CERAMICS - John E. Ritter
    229 - Introduction
    231 - Static Versus Impact Damage
    234 - Strength Degradation
    239 - Erosive Wear
    242- References
    245 - FRICTION AND WEAR OF CERAMICS. TEST METHODS AND WEAR MECHANISMS - Remo Martinella and Giuseppe Palombarini
    245 - Introduction
    246 - Role of Standard Wear Tests
    247 - Selecting Testing Rigs
    252 - Measuring Friction and Wear and Reproducibility of Data
    259 - Wear Mechanisms
    269 - References
    271 - STANDARDISATION IN THE FIELD OF ADVANCED TECHNICAL CERAMICS - Roger Morrell
    271 - Introduction
    273 - Terminology and Classification
    274 - Standardisation of Test Methods
    274 - Ceramic Powders
    275 - Monolithic Ceramic Materials
    275 - Strength Tests
    277 - Elastic Properties
    277 - Fracture Toughness Tests
    278 - Slow Crack Growth Tests
    279 - Creep Tests
    280 - Wear and Hardness Tests
    280 - Thermal Properties and Thermal Shock
    281 - Oxidation and Corrosion Testing
    282 - Ceramic Matrix Composites
    282 - Mechanical Testing
    283 - Other Aspects
    283 - Ceramic Coatings
    284 - Concluding Remarks
    284 - References